A Petrov–Galerkin enriched method: A mass conservative finite element method for the Darcy equation
نویسندگان
چکیده
Starting from the non-stable P1=P0 discretization we build enhanced methods for the Darcy equation which are stable and locally mass-conservative. The methods are derived in a Petrov–Galerkin framework where both velocity and pressure trial spaces are enriched with multiscale functions. These functions solve local problems correcting the residuals of the strong equations in each element and interior edge, which leads to a velocity space enhanced with functions belonging to the lowest order Raviart–Thomas space. Several numerical tests validate the methods. 2007 Elsevier B.V. All rights reserved.
منابع مشابه
University of Colorado at Denver and Health Sciences Center A Petrov-Galerkin Enriched Method: A Mass Conservative Finite Element Method For The Darcy Equation
We present novel enhanced finite element methods for the Darcy problem starting from the non stable continuous P1/P0 finite element space enriched with multiscale functions. The methods are derived in a Petrov-Galerkin framework where both velocity and pressure trial spaces are enriched with functions based on residuals of the strong equations in each element and edge partition. The strategy le...
متن کاملOn a Residual Local Projection Method for the Darcy Equation
A new symmetric local projection method built on residual bases (RELP) makes linear equal-order finite element pairs stable for the Darcy problem. The derivation is performed inside a Petrov-Galerkin enriching space approach (PGEM) which indicates parameter-free terms to be added to the Galerkin method without compromising consistency. Velocity and pressure spaces are augmented using solutions ...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملOn multiscale methods in Petrov-Galerkin formulation
In this work we investigate the advantages of multiscale methods in Petrov-Galerkin (PG) formulation in a general framework. The framework is subject to a localized orthogonal decomposition of a high dimensional solution space into a low dimensional multiscale space and a high dimensional remainder space with negligible fine scale information. As a model problem we consider the Poisson problem....
متن کاملOn Application of the Weak Galerkin Finite Element Method to a Two-Phase Model for Subsurface Flow
This paper presents studies on applying the novel weak Galerkin finite element method (WGFEM) to a two-phase model for subsurface flow, which couples the Darcy equation for pressure and a transport equation for saturation in a nonlinear manner. The coupled problem is solved in the framework of operator decomposition. Specifically, the Darcy equation is solved by theWGFEM, whereas the saturation...
متن کامل